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BACKGROUND: Air pollution-attributable disease burdens reported at global, country, state, or county levels mask potential smaller-scale geographic
heterogeneity driven by variation in pollution levels and disease rates. Capturing within-city variation in air pollution health impacts is now possible
with high-resolution pollutant concentrations.
OBJECTIVES: We quantified neighborhood-level variation in air pollution health risks, comparing results from highly spatially resolved pollutant and
disease rate data sets available for the Bay Area, California.
METHODS:We estimated mortality and morbidity attributable to nitrogen dioxide (NO2), black carbon (BC), and fine particulate matter [PM ≤2:5 lm
in aerodynamic diameter (PM2:5)] using epidemiologically derived health impact functions. We compared geographic distributions of pollution-
attributable risk estimates using concentrations from a) mobile monitoring of NO2 and BC; and b) models predicting annual NO2, BC and PM2:5 con-
centrations from land-use variables and satellite observations. We also compared results using county vs. census block group (CBG) disease rates.

RESULTS: Estimated pollution-attributable deaths per 100,000 people at the 100-m grid-cell level ranged across the Bay Area by a factor of 38, 4, and
5 for NO2 [mean= 30 (95% CI: 9, 50)], BC [mean=2 (95% CI: 1, 2)], and PM2:5, [mean= 49 (95% CI: 33, 64)]. Applying concentrations from mo-
bile monitoring and land-use regression (LUR) models in Oakland neighborhoods yielded similar spatial patterns of estimated grid-cell–level
NO2-attributable mortality rates. Mobile monitoring concentrations captured more heterogeneity [mobile monitoring mean= 64 (95% CI: 19, 107)
deaths per 100,000 people; LUR mean=101 (95% CI: 30, 167)]. Using CBG-level disease rates instead of county-level disease rates resulted in 15%
larger attributable mortality rates for both NO2 and PM2:5, with more spatial heterogeneity at the grid-cell–level [NO2 CBG mean= 41 deaths per
100,000 people (95% CI: 12, 68); NO2 county mean=38 (95% CI: 11, 64); PM2:5 CBG mean= 59 (95% CI: 40, 77); and PM2:5 county mean=55
(95% CI: 37, 71)].
DISCUSSION: Air pollutant-attributable health burdens varied substantially between neighborhoods, driven by spatial variation in pollutant concentra-
tions and disease rates. https://doi.org/10.1289/EHP7679

Introduction
Air pollution is associated with a large burden of death and dis-
ability worldwide, with fine particulate matter [PM ≤2:5 lm in
aerodynamic diameter (PM2:5)] estimated to be responsible for
4:9million deaths globally in 2015 (GBD 2017 Risk Factor
Collaborators 2018). Nitrogen dioxide (NO2), a traffic-related air
pollutant, is also linked with adverse health outcomes, although it
is often not quantified in pollution-attributable disease burden
studies, potentially because coarsely resolved concentration esti-
mates are often unable to capture highly spatially variable pat-
terns in NO2 (Anenberg et al. 2017). Recent advances in the
understanding of the health effects of NO2, meta-analyses
(Atkinson and Butland 2018; U.S. EPA 2016), and published rec-
ommendations from a committee of scientists (Atkinson and

Butland 2018) provide guidance on evaluating and interpreting
NO2, as a marker of the mixture of traffic air pollution, in health
impact assessments.

Much of the air pollution disease burden is concentrated in
cities (Anenberg et al. 2019). Cities are home to about half the
world’s population (United Nations 2019) and 80% of the U.S.
population (U.S. Census Bureau 2018). Many cities also experi-
ence both high air pollution levels (Krzyzanowski et al. 2014;
Marlier et al. 2016) and health inequity challenges (Grant et al.
2017; Kioumourtzoglou et al. 2015; Stephens 2018). However,
estimated health impacts from air pollution have typically been
reported at the country, state, or county level, masking potential
heterogeneity in impacts at fine spatial scales.

Understanding how air pollution-related health risks vary
within cities could help inform policies aimed at improving pub-
lic health and reducing population disparities in exposure and
risk in urban areas. Recent efforts have estimated air pollution
health impacts at the city level, finding dramatic variation in
health risks across cities globally (Achakulwisut et al. 2019;
Anenberg et al. 2019). However, only a limited number of studies
have assessed air pollution mortality risks at the neighborhood
level, and these have focused on individual cities and have gener-
ally not compared the advantages and disadvantages of different
concentration data sources (Brønnum-Hansen et al. 2018;
Kheirbek et al. 2013; Kihal-Talantikite et al. 2018; Martenies
et al. 2018; Mueller et al. 2017, 2018, 2020; Pierangeli et al.
2020). In addition, these previous city-scale studies may not have
captured the spatial distribution of air pollution-related health
risks given that the grid sizes used in those studies can dilute
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hotspots of high concentrations co-located with large populations
(Fenech et al. 2018; Korhonen et al. 2019; Li et al. 2016; Punger
and West 2013). Beyond horizontal grid size, the resolution of
emissions inputs to estimate concentrations can also influence the
resulting estimated air pollution-related health impacts. Two
studies examining the impacts of both varying horizontal grid
and emissions resolution on health burden estimates report mixed
results. Paolella et al. (2018) reported a reduced ability of coarse
resolution concentration estimates to identify disparities in health
impacts, whereas a study by Thompson et al. (2014) found lim-
ited difference for PM2:5 attributable health impacts with varying
emissions and grid resolution (Thompson et al. 2014).

Despite these differences, finer-resolution exposure estimates
may decrease the potential for exposure misclassification.
Estimating air pollution health impacts at the “hyperlocal” scale
(resolving neighborhoods within cities) is now possible with
high-resolution pollutant concentrations derived from mobile
monitoring and modeling, complemented by satellite remote
sensing. Here, we exploit a novel and extremely high-spatial–re-
solution pollution concentration data set from mobile monitoring
of NO2 and black carbon (BC) using Google Street View (here-
after referred to as Street View) cars throughout the Bay Area,
California, from 2015 to 2017. Previously, these measurements
have been used to create street-level annual average concentra-
tions of NO2 and BC, a land-use regression (LUR) model
(Messier et al. 2018), and an epidemiological analysis of relation-
ships between long-term exposure to NO2 and cardiovascular dis-
ease (CVD) outcomes (Alexeeff et al. 2018), all for Oakland,
California. Jointly, these efforts demonstrated the application of
highly resolved concentration data to analyze intra-urban varia-
tion in pollutant exposure and the associated health risks.
Building upon these efforts, here we use Street View concentra-
tions to assess air pollution health impacts at the neighborhood
scale. To our knowledge, our analysis is the first to use air pollu-
tion levels from sensor-aided mobile monitoring in a health
impact assessment. Given that most cities globally do not have
the same availability of highly spatially resolved concentration
data as the Bay Area, we compare pollutant-attributable health
risks estimated using the Street View concentrations vs. less
data- and resource-intensive predictive models. These predictive
models use land-use variables and satellite observations of aero-
sol optical depth (AOD) that can be applied in any city globally
to create street-level annual average concentrations of NO2 and
PM2:5 (Larkin et al. 2017; van Donkelaar et al. 2016).

Neighborhood-level health risks from air pollution are driven
not just by exposure levels but also by baseline disease rates,
which themselves vary within cities (e.g., Fann et al. 2012), influ-
encing attributable mortality estimates (Chowdhury and Dey
2016; Hubbell et al. 2009). Prior air pollution morbidity and mor-
tality assessments have typically used baseline disease rates at
the state, county, or national level owing to the limited availabil-
ity of more highly resolved health data (Alotaibi et al. 2019;
Caiazzo et al. 2013; Cohen et al. 2017; Fann et al. 2012, 2017;
Zhang et al. 2018). Here, in addition to comparing across concen-
tration data sets, we also assess the influence of baseline disease
rates with varying spatial resolutions (i.e., county-level vs. census
block group (CBG)-level baseline disease rates) on estimated
pollution-attributable health risks.

The San Francisco Bay Area of California has a population of
>7million people. This case study for the Bay Area, where high-
resolution concentration and disease rate data are available, allows
us to explore intra-urban disparities in air pollutant exposure,
pollution-attributable health risks, and pollution-attributable dis-
ease burdens—three related but distinct metrics that are used in
policy contexts. The objectives of our study were to a) identify the

degree of spatial heterogeneity in air pollution-related health
impacts at the neighborhood scale within a city; b) compare the
spatial patterns of air pollution disease burdens estimated using dif-
ferent concentration and baseline disease rate data sets; and c)
draw lessons learned for conducting neighborhood-scale air pollu-
tion health impacts in cities where highly resolved concentration
and baseline disease rate data sets are not available. We anticipate
that our results can be used to inform best practices (currently
under development) for assessing air pollution-related health risks
within cities globally, as well as efforts by policymakers to address
disparities in the health impacts of air pollution.

Methods
We used epidemiologically derived health impact functions to
estimate mortality and morbidity that may be attributable to NO2,
BC, and PM2:5, on a 100-m grid resolution for the Bay Area,
using different concentration inputs and varying spatial resolu-
tions for baseline disease rates. We used the Bay Area Air
Quality Management District’s (BAAQMD) nine-county defini-
tion of the Bay Area, which included Alameda, Contra Costa,
Marin, Napa, San Francisco, Santa Clara, San Mateo, Solano,
and Sonoma counties (Figure 1). Within the Bay Area, we
focused on Alameda County, for which we were able to obtain
CBG-level disease rates, and within Alameda County, the areas
of West, Downtown, and East Oakland, where the Street View
cars measured pollution levels (Table 1). Oakland is home to a
major container port and has four large interstates (I-880 to the
south and west; I-80 and I-580 to the north; and I-980 transecting
West and Downtown Oakland), as well as numerous rail yards
and rail lines. East and West Oakland have been designated
by the California Environmental Protection Agency (EPA)
Environmental Justice Task Force as priority communities bear-
ing disproportionate pollution burdens (Environmental Justice
Task Force 2017).

Health Impact Function
For each pollutant–outcome pair, we derived concentration–
response factors (CRFs) from relative risk (RR) estimates (Table
1) identified through a literature review using PubMed and
Google Scholar (see the Supplemental Material “Literature
Review” and Tables S1–S15 and Figures S1–S11). We used epi-
demiological studies with large geographic areas as opposed to
those conducted in single cities, assuming large epidemiological
studies more fully account for population variation and confound-
ing factors and have more statistical power. Where available, we
used pooled risk estimates from meta-analyses. We applied a log-
linear function to all analyses, based on current evidence for
PM2:5 and, for NO2, a combination of limited evidence for linear
vs. log-linear functions and only small differences between the
two at the concentrations in our study. Equation 1 describes the
log-linear health impact function used for all pollutant–health
end point pairs:

yh,i,a ¼ mh,i,a ×Pi,a × ð1− e−bh,aDxiÞ (1)

where yh,i,a represents the number of cases of the health outcome
(h) for age group (a) attributable to the pollutant for each grid
cell (i); mh,i,a represents the baseline disease rate for each health
end point (h), age group (a), and grid cell (i); Pi,a represents the
population count for each grid cell (i) and age group (a); and
1− e−bh,aDxi represents the attributable fraction, with bh,a the nat-
ural log of the RR per x concentration above the baseline (Dx) in
each grid cell (i), for each health end point (h) and age group (a).
We accounted for uncertainty by calculating the attributable cases
at the 2.5th and 97.5th percentiles of the RR estimates. All health
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impact calculations were conducted in R (version 3.5.3; R
Development Core Team).

For all pollutants, we assumed no threshold for low concen-
trations because a recent study identified health impacts at PM2:5
concentrations as low as 2 lg=m3 (Crouse et al. 2012) and a
recent NO2 epidemiological study included concentrations as low
as 2 ppb (Khreis et al. 2017). Given that we applied a log-linear
function to both PM2:5 and BC, we likewise assumed no thresh-
old for BC. For NO2, the U.S. EPA (2016) determined that there
are causal and likely causal relationships for short-term and long-
term exposure and respiratory effects, respectively. Because we
were able to obtain baseline disease rates for pediatric asthma
emergency room (ER) visits and pediatric asthma incidence, two
of which included respiratory outcomes included in the U.S.
EPA’s “Integrated Science Assessment for Nitrogen Oxides”
(U.S. EPA 2016), we included these health end points for short-
and long-term exposure to NO2. Recent meta-analyses have also
determined that there is a likely causal relationship between long-
term exposure to NO2 and increased risk of mortality (COMEAP
2018) and potentially for CVD mortality, the most commonly
included cause-specific mortality end point among included stud-
ies in the meta-analysis (Atkinson et al. 2018). We estimated
impacts of NO2 on all-cause and CVD mortality. Although we
examined NO2, there remains active debate on the independent
causal relationship between long-term NO2 on mortality and
other health outcomes. NO2 is, however, a well-established
marker of localized traffic-related air pollution, such as ultrafine
particles and polycyclic aromatic hydrocarbons and is used as a
proxy to estimate the mortality burden due to highly variable
local traffic-related air pollution (Atkinson and Butland 2018) im-
portant for urban air pollution policy decision making.

For PM2:5, we included health end points determined to be
causal or likely to be causal by the U.S. EPA, including all-cause
mortality, CVD mortality, CVD hospitalizations among the el-
derly, and pediatric asthma incidence and ER visits (U.S. EPA

2019). For BC, the U.S. EPA concluded that there is currently
insufficient evidence to ascribe any one component of PM2:5 as
more strongly associated than total PM2:5 mass, although some
studies found associations between long-term exposure to BC
and all-cause and CVD mortality, and between short-term BC ex-
posure and CVD hospitalizations (U.S. EPA 2019). We therefore
included all-cause and CVD mortality, as well as CVD hospital-
izations for BC. Because applying the log-linear model to indi-
vidual PM2:5 components can distort the risk estimates given
nonlinearity at the low end of the curve (Anenberg et al. 2012),
we performed a sensitivity analysis in which we assumed the BC
contribution to PM2:5 mortality was the same as its contribution
to PM2:5 concentrations.

NO2, BC, and PM2:5 Concentrations
We used multiple pollutant concentration data sets, including mo-
bile monitoring (BC and NO2) and predictive models for the
United States and globally using an LUR model (NO2), and for
the United States (BC and PM2:5) and globally (PM2:5) using
satellite-based models. Maps of concentrations for each pollutant,
data set source, and geographical extent are provided in Figures
S12–S28.

For the mobile monitoring data set, two Street View cars
equipped with fast-response instrumentation [NO2 via cavity
attenuation phase shift spectroscopy (Model T500U, Teledyne
Inc.), and BC via photoacoustic absorption spectroscopy (Droplet
Measurement Technologies)] repeatedly drove every road in
West, Downtown, and East Oakland during daytime hours
(∼ 0900–1800 hours) on weekdays between 28 May 2015 and 21
December 2017, producing >3million data points (Apte et al.
2017; Aclima et al. 2019). These measurements were aggregated
to independent drive pass means, and then medians of the drive
pass means were calculated for 30-m road segments, reflecting
long-term spatial differences in concentrations (Messier et al.

Figure 1. Geographic area of analysis for (A) the Bay Area, California, highlighting (B) Alameda County and (C) West, (D) Downtown, and (E) East Oakland
within Alameda County. Base map data from ArcMap (version 10.4; Esri), HERE, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS
User Community.
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2018). The resulting data set indicated substantial spatial variabil-
ity at fine scales, with median concentrations for road segments
within the same city blocks observed to vary by up to a factor of
five. Here, we further aggregated the 30-m segment averages to a
100 m×100 m grid resolution using a mean of all the mobile
measurement points in each grid cell. This resulted in a concen-
tration data set with an annual average NO2 concentration range
of 3.37 to 45 ppb [mean= 12:7, standard deviation ðSDÞ=6:6]
and annual average BC concentration range of 0.2 (limit of detec-
tion) to 2:59lg=m3 (mean= 0:47, SD=0:35).

For NO2, LUR models offer full spatial coverage in addition to
the very high spatial resolution needed to capture near-roadway
concentrations (Hystad et al. 2011). Here, we used a global LUR
that estimated annual average NO2 at 100 m× 100 m resolution
for 2011 using satellite measurements, numerous land-use predic-
tor variables, and annual measurement data from 5,220 air moni-
tors in 58 countries (Larkin et al. 2017). The resulting NO2
concentrations for 2011 in the Bay Area ranged from 1 to 37 ppb
(mean= 8, SD=4), and the model explained 54% (adjusted R2 of
0.54) of the variance in global NO2 concentrations, with an abso-
lute mean error of 3:7 ppb. This data set has been applied in recent
health impact assessments quantifying the global burden of NO2
on pediatric asthma incidence (Achakulwisut et al. 2019). Because
the global LUR model was not calibrated specifically for the
United States, we also estimated results using a U.S.-specific LUR
(Bechle et al. 2015). Results from the Street View concentrations
were not included in the global LUR; therefore, we do not expect
spatial distributions in concentrations to match. We reported esti-
mates using the global LUR as themain results to inform best prac-
tices for neighborhood-scale health impact assessments in cities
globally.

Although PM2:5 was not measured by the Street View cars,
PM2:5 is more spatially homogenous compared with NO2 and can
therefore be estimated usingmore coarsely resolved predictivemod-
els. Therefore, we used surface concentrations derived from satellite
observations of AOD from both global (van Donkelaar et al. 2016)
andU.S.-specificmodels (vanDonkelaar et al. 2019; Di et al. 2016).
The global PM2:5 data set [0:01× 0:01 (∼ 1 km2)-degree resolu-
tion] combined AOD from three satellite products, Goddard Earth
Observing System (GEOS)-Chem chemical transport modeling,
and geographically weighted regression to merge surface monitor
in situmeasurements of PM2:5. The model accounted for 81% of the
variance in PM2:5 and resulted in annual average surface PM2:5 con-
centrations ranging from 3 to 18:5 lg=m3 (mean= 9, SD=2:8)
across the Bay Area for 2016. The global PM2:5 data set was inclu-
sive of BC, although the authors recently developed a North
American product, employing similar methods to estimate PM2:5
and speciated components of PM2:5 also at 0:01× 0:01-degree reso-
lution. Although U.S. estimates for BC explained 68% of the total
variance in BC, estimates for BC in theU.S.Northwest are consider-
ably lower (R2 = 0:29). For the North American data set in the Bay
Area for 2016, BC concentrations for 2016 ranged from 0.1 to
0:7 lg=m3 (mean= 0:3, SD=0:1) and PM2:5 was slightly lower
than the global model with concentrations ranging from 2.9 to
11lg=m3 (mean= 5:9, SD=1:5). For PM2:5, we compared health
burden estimates using global satellite-derived estimates to North
American satellite-derived estimates, whereas for BC, our main
analysis compared the satellite-derivedmodel to Street Viewmobile
monitoring concentrations. Given that satellite-derived PM2:5 con-
centrations are highly uncertain (Diao et al. 2019),we also estimated
results using a more statistically based PM2:5 model for the United
States (Di et al. 2016, 2017).

Table 1. Relative risks (RRs) used for estimating the health impacts (95% CIs in parentheses) and inputs used for calculating each pollutant–health outcome
pair.

Pollutant Concentrations Health outcome Baseline disease rates Age group Study RR (95% CI)

BC Street view for Oakland
and van Donkelaar et
al. 2019 for Bay Area

All-cause mortality Alameda County: CBG level Adults Janssen et al. 2011 1.007 (1.004, 1.009)
Bay Area: county level

CVD mortality Alameda County: CBG level Adults Janssen et al. 2011 1.018 (1.011, 1.031)
Bay Area: county level

CVD hospitalizations Bay Area: county level Elderly Peng et al. 2009 1.020 (1.008, 1.032)
NO2 Street View for Oakland,

Larkin et al. 2017
(main results) and
Bechle et al. 2015 (sen-
sitivity) for Bay Area

All-cause mortality Alameda County: CBG level Adults Atkinson and Butland 2018 1.040 (1.011, 1.069)
Bay Area: county level
Alameda County: CBG level Adults Crouse et al. 2015 1.1025 (1.082, 1.145)
Bay Area: county level
Alameda County: CBG level Elderly Eum et al. 2019 1.023 (1.021, 1.026)
Bay Area: county level

CVD mortality Alameda County: CBG level Adults Atkinson et al. 2018 1.006 (1.004, 1.009)
Bay Area: county level
Alameda County: CBG level Elderly Eum et al. 2019 1.103 (1.099, 1.108)
Bay Area: county level

Asthma incidence State level for California Pediatric Khreis et al. 2017 1.258 (1.098, 1.374)
Asthma ER visits Bay Area: ZIP-code level All ages Orellano et al. 2017 1.024 (1.005, 1.043)

Bay Area: ZIP-code level All ages Zheng et al. 2015 1.002 (1.001, 1.003)
Bay Area: ZIP-code level Pediatric Orellano et al. 2017 1.040 (1.001, 1.081)
Bay Area: ZIP-code level Pediatric Zheng et al. 2015 1.003 (1.002, 1.004)

PM2:5 van Donkelaar et al. 2016
(main results) and Di et
al. 2016 (sensitivity)
for Bay Area

All-cause mortality Alameda County: CBG level Adults Krewski et al. 2009 1.06 (1.04, 1.08)
Bay Area: county level
Alameda County: CBG level Elderly Di et al. 2017 1.084 (1.081, 1086)
Bay Area: county level

CVD mortality Alameda County: CBG level Adults Turner et al. 2016 1.12 (1.09, 1.15)
Bay Area: county level
Alameda County: CBG level Elderly Thurston et al. 2016 1.100 (1.050, 1.150)
Bay Area: county level

CVD hospitalizations Bay Area: county level Elderly Bravo et al. 2017 1.008 (1.006, 1.010)
Asthma incidence State level for California Pediatric Khreis et al. 2017 1.344 (1.105, 1.629)
Asthma ER visits Bay Area: ZIP-code level Pediatric Lim et al. 2016 1.048 (1.028, 1.067)

Note: RRs are reported per 10 lg=m3 for PM2:5, per 10 ppb for NO2, and per 1 lg=m3 for BC. RRs for NO2 reported per 10 lg=m3 were converted to RR per 10 ppb assuming ambient
air pressure of 1 atmosphere and temperature of 25° C. Adults, 25–99 years of age; BC, black carbon; CBG, census block group; CI, confidence interval; CVD, cardiovascular disease;
elderly, 65–99 years of age; ER, emergency room; NO2, nitrogen dioxide; PM2:5, fine particulate matter; pediatric, 0–17 years of age.
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Baseline Disease Rates and Demographics
Maps of baseline disease rates for all health end points and spatial
resolutions are provided in Figures S29–S35. We obtained all-
cause and CVD mortality rates at both the CBG and county levels
(Table S16). For the CBG level, we obtained counts and rates for
all-cause and CVD mortality [categorized according to the
International Statistical Classification of Diseases, 10th Revision
(ICD-10; WHO 2016) ICD-10 codes I10–I75] from the Alameda
County Public Health Department for adults and the elderly.
CBG rates were based on 7-y averages of death counts (2011–
2017) over average population counts for 2012, 2014, and 2016
(Eayres and Williams 2004) and were age-adjusted using the
standard 2000 U.S. Census population (Pickle and White 1995).
In addition, CBGs with counts <10 were suppressed to protect
confidentiality (Brillinger 1986). Combined, these methods avoid
interannual variability for small-area (CBG-level) baseline dis-
ease rates and resulted in a conservative mean relative standard
error of 15 (range= 7–58, SD=5) for 1,046 CBGs. For all-cause
mortality ages ≥25 y, there were 6 (0.5%) missing block groups,
and for all-cause mortality ages ≥65 y, there were 9 (0.86%)
missing block groups. For CVD mortality, there were 37 (3.53%)
missing block groups for ages ≥25 y and 71 (6.79%) missing
block groups for ages ≥65 y. To impute missing CBG baseline
disease rates, we used an average of the five nearest neighbor
rates. We obtained age-adjusted county-level mortality data for
2016 for both all-cause and CVD mortality most closely match-
ing our CBG disease categories (ICD-10 codes I00–I78) from
CDC Wonder (CDC 2018). CBG baseline mortality rates show
more heterogeneity in the spatial distribution of disease. Annual
all-cause mortality for adults ranged from 29 to 331 per 10,000,
compared with 21 to 38 per 10,000 using the county rates.

We were unable to obtain baseline disease rates at the CBG
level for nonmortality end points. For CVD hospitalizations rates,
we used county-level rates from the BenMap-CE 1.4.14
(BenMap) software produced by the U.S. EPA for conducting
health impact assessment (Sacks et al. 2018). Rates were avail-
able in BenMap for the elderly in 5-y age groups: ages 65–69,
70–74, 75–79, 80–84, and 85–99 y. The BenMap program uses
2010 U.S. Census data as the denominator when pooling age
groups into a single rate. We applied the 5-y age group rates to
the 10-y age groups (65–74, 75–84, and ≥85 y) available from
the 2010 U.S. Census and used the U.S. Census data from
BenMap as the denominator. We weighted the rates by age group
count and created an aggregated rate per county (n=9) for CVD
hospitalizations. CVD hospitalization (ICD-9 codes 390–429)
rates in 2014 ranged from 296 to 604 per 10,000 for ages 65–99 y,
across counties in the Bay Area. For asthma ER visits (ICD-9 code
493/ICD-10 code J45), we used county-level rates and ZIP-code–
level rates from the California Department of Public Health for
2016 (CDPH 2017, 2019), and we used county rates to impute data
for missing ZIP-code rates (17% of the pediatric population and
10% of the adult population). Across the ZIP codes in the Bay
Area, 2016 baseline rates of asthma ER visits among children
ranged from 1 to 154 per 10,000, and for adults, from 1 to 175 per
10,000. For pediatric asthma incidence, we applied a California
statewide baseline rate for 2008 of 107 per 10,000 persons
(n=96,550) (Milet et al. 2013) becausemore recent and finer reso-
lution data were not available. Preprocessing of baseline disease
rates was conducted in ArcMap (version 10.4; Esri).

We used nighttime (i.e., estimates of permanent residents) pop-
ulation counts from the LandScan USA data set at 100 m×100 m
resolution for 2017 given that it most closely aligned with the tem-
poral availability of our pollutant and baseline disease rate data
sets (Oak Ridge National Laboratories 2020; Bhaduri et al. 2007).
Compared with the daytime population, we considered the

nighttime population to be more consistent with the common
approach of epidemiological studies to assign exposure based on
home address. LandScanUSA employed amultidimensional dasy-
metric modeling technique, spatially redistributing the U.S.
Census data to inhabited land-use areas. Because LandScan USA
does not include age breakdowns, we calculate the fraction of the
total population in different age groups using age-specific counts
from the Gridded Population of the World (version 4) for 2010,
available at 1-km resolution from the Socioeconomic Data and
Applications Center at the Center for International Earth Science
Information Network at Columbia University (CIESEN 2019). To
ascertain whether using fine-resolution baseline disease rates iden-
tifies disparities in pollutant-attributable disease between popula-
tion subgroups, we estimated the percentage of pollutant-
attributable cases in Alameda County in CBGs with >50%minor-
ity (Black, Asian, Hispanic, Pacific Islander, and American Indian)
population, using U.S. Census population counts at the CBG level
for 2010, themost recent year available.

Because our intention was to inform best practices for cities
around the world to conduct within-city health impact assessments,
we compared the spatial distributions of NO2- and BC-attributable
pollutant-attributable disease burdens estimated using Street View
vs. globally available modeled concentrations from LUR- (Larkin
et al. 2017) and satellite-based models (van Donkelaar et al. 2016).
To do this comparison, we used the Getis-Ord local statistic in
ArcPro (version 2.7), which provides a Z-score with accompanying
p-value indicating whether each area has estimated pollutant-
attributable cases that are higher or lower than surrounding grid cells
(Ord and Getis 1995). We also compared the influence of CBG vs.
county-level disease rates on the spatial patterns of estimated air
pollution-related all-cause mortality in Alameda County given that
baseline disease rates are not typically available at the CBG scale.

We also conducted several policy-relevant sensitivity analy-
ses to assess the pollutant-attributable health impacts that could
be avoided if air pollutant concentrations were reduced to lower
levels. We specifically assessed two hypothetical scenarios in
which concentrations of each pollutant were reduced to the mini-
mum and median grid-cell–level concentrations of each data set.
These scenarios are conceptually similar to pollution reduction
targets for West Oakland established in the West Oakland
Community Action Plan (BAAQMD and West Oakland
Environmental Indicators Project 2019) as part of efforts by the
State of California to identify and reduce air pollution among dis-
proportionately exposed California communities, as required by
2017 Assembly Bill 617 (Cal AB 617 2017).

Results

Overall Pollutant-Attributable Disease Burdens in the
Bay Area
We first estimated the total burden of NO2, BC, and PM2:5 across
the Bay Area using the spatially complete concentration estimates
from the global LUR and satellite-based models and county-level
disease rates (Table 2–4). We estimated that 2,520 [95% confi-
dence interval (CI): 740, 4,190], 150 (95% CI: 80, 190), and
3,080 (95% CI: 2,100, 4,020) deaths could be attributable to
NO2, BC, and PM2:5 annually in the Bay Area, respectively. We
also estimated asthma morbidity attributable to NO2 and PM2:5
across the Bay Area. Using a state-level asthma incidence rate
and ZIP-code–level asthma ER visits, we estimated 5,210 (95%
CI: 2,340, 6,780) and 5,590 (95% CI: 2,120, 8,250) new pediatric
asthma cases, and 620–730 (95% CI: 20, 1,400) and 720 (95%
CI: 430, 990) asthma ER visits attributable to NO2 and PM2:5
annually in the Bay Area, respectively. For NO2 and PM2:5, for
which we had both U.S. and global concentration models, we
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estimated 30% and 37% larger annual attributable mortality bur-
dens using the global vs. U.S. concentration data sets (NO2
global= 2,520; NO2 U:S:=1,930; PM2:5 global= 3,080; PM2:5
U:S:=1,960=Excel Tables S1 and S2), consistent with the mag-
nitude difference in concentration estimates.

Estimated 100-m grid-cell–level pollution-attributable mortal-
ity rates (annual attributable deaths per 100,000 people) ranged
across the Bay Area by a factor 38, 4, and 5 for NO2, BC, and
PM2:5 (NO2 range= 3–113, mean=30, SD=13; BC range= 1–4,
mean= 2, SD=1; PM2:5 range= 20–95, mean=49, SD=13;
Excel Tables S1–S3). For NO2, the largest mortality impact among
counties occurred in Alameda County, where it was 14 times
larger than in the least impacted county, Napa (Bay Area
county range= 40–570 attributable deaths annually, mean= 280,
SD=210; city range= 0–390, mean=11, SD=38; Excel Tables
S4 and S5). Inter-county and -city variation in BC-attributable
mortality was also high, with Santa Clara County having a burden
13 times that of Napa County (county range= 3–40 attributable
deaths annually, mean= 16, SD=12; city range= 0–20,
mean= 1, SD=2; Excel Tables S6 and S7). For PM2:5, the most
impacted county (Santa Clara) had a PM2:5 mortality burden that
was 12 times larger than the least impacted county (Napa)
(county range= 60–690 attributable deaths annually, mean= 340,
SD=230; city range= 0–395, mean=14, SD=40; Excel Tables
S8 and S9).

Influence of Varying Pollutant Concentrations Data Sets
and Baseline Disease Rates
We next focused in on West, Downtown, and East Oakland
(∼ 30 km2), the part of the Bay Area where Street View measure-
ments of NO2 and BC are available and can be compared with
the application of concentrations from predictive models. Total
estimated NO2-attributable deaths in Oakland approximately
doubled when using the LUR [77 annual attributable deaths (95%
CI: 23, 127)] compared with the Street View concentrations [39
(95% CI: 12, 66)] (Figure 2). NO2-attributable mortality rates
ranged across 100-m grid cells by a factor of 11 and 26 using LUR
and Street View estimates, respectively (LUR range= 32–342 an-
nual attributable deaths per 100,000, mean= 101, SD=31;
Street View range= 15–396,mean= 64, SD=39).

BC-attributable mortality burdens using concentrations from
the predictive model (van Donkelaar et al. 2019) exceeded the
estimates based on Street View concentrations in Oakland
[Street View=2 annual attributable deaths (95% CI: 1, 3);
satellite-derived: 4 (95% CI: 2, 5)]. For BC and PM2:5, pollution-
attributable mortality rates ranged across 100-m grid cells by a
factor of 39, 12, and 8 when using BC Street View, U.S. BC
satellite-derived, and global PM2:5 satellite-derived concentra-
tions, respectively (range= 0–39 annual attributable deaths per
100,000, mean= 4, SD=4; range= 1–12, mean= 5, SD=1;
range= 22–183, mean= 96, SD=29). In our sensitivity analysis
using a proportional approach that assumed that the BC contribu-
tion to PM2:5 mortality is the same as its contribution to PM2:5
concentrations (1.25–7.5% using the satellite-derived concentra-
tion estimates), the range of the BC-attributable fraction of mor-
tality across 100-m grid cells was very similar to our core results
(0.07–0.5%, applying the log-linear CRF to BC, and 0.06–0.4%,
using the proportional approach).

Despite moderate-to-low correlation between concentrations
from the Street View monitoring and predictive models, we found
similar spatial clusters of NO2 and BC-attributable fractions using
both concentration data sets. For the grid cells in the Oakland area
for which we had both Street View and LUR (NO2) and U.S.
satellite-derived (BC) results, a large fraction of grid cells (NO2:
45%, n=1,619; BC: 37%, n=1,334) were fully concordant usingT
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the Z-score statistic, meaning that both concentration data sets iden-
tified clusters of attributable cases that are both significant
(p<0:05) and in the same direction (either a higher or lower value
cluster) (Figures S36 and S37). Another 37% (n=1,309) and 22%
(n=799) of grid cells for NO2 and BC had directional concordance,
but concentration data sets identified differing significance in the
clusters. We also found that 13% (n=452) and 15% (n=546) of
grid cells for NO2 and BC, respectively, were directionally discord-
ant between the two concentration data sets but had the same signifi-
cance level. About 5% (n=193) and 25% (n=899) of grid cells for
NO2 and BC were completely discordant. Although both data sets
identified similar hotspots, the StreetView data set identified awider
range of Z-scores (NO2 range= − 3:98 to 10:02, mean= − 0:06,
SD=2:42; BC range= − 3:80 to 12:77,mean= − 0:09, SD=2:20)
as compared with LUR and satellite-derived concentrations (NO2
range= − 4:07 to 7:51, mean= 0:19, SD=2:17; BC range=
− 8:46 to 2:53, mean= − 0:04, SD=2:06).

We next assessed the influence of CBG vs. county-level baseline
disease rates on estimated pollutant-attributable mortality within
Alameda County, where we had baseline all-cause mortality rates for
both spatial resolutions. Using the same modeled concentrations of
NO2 (LUR) andPM2:5 (satellite-derived) in both cases, CBGbaseline
disease rates yielded 15% and 13% higher spatially aggregated esti-
mates of pollutant-attributable mortality rates compared with the
application of county baseline disease rates (NO2 CBG=60 annual
attributable deaths per 100,000; NO2 county= 52; PM2:5 CBG=70;
PM2:5 county= 61). Differences were evenmore evident at finer spa-
tial aggregations. For example, for just the Oakland area extent, CBG
baseline disease rates yielded 52%, 67%, and 57% higher NO2, BC,
and PM2:5-attributable all-cause mortality rates compared with the
application of county baseline disease rates (NO2 CBG=97 annual

attributable deaths per 100,000; NO2 county= 64; BC CBG=5;
BC county= 3; PM2:5 CBG=88; PM2:5 county= 56). Applying
CBG baseline disease rates also revealed spatial heterogeneity in esti-
mated pollutant-attributable mortality rates that was masked when
using county-level disease rates. Applying CBG baseline disease
rates yielded grid-cell–level pollutant-attributable rates that varied
by factors of 29, 12, and 14 for NO2, BC, and PM2:5 (NO2
CBG range= 15–434 annual attributable deaths per 100,000,
mean= 41, SD=19; BC CBG range= 1–12, mean= 2, SD=1;
PM2:5 CBG range= 19–267, mean=59, SD=17; Excel Tables
S9–S12) acrossAlamedaCounty, whereas applying county baseline
disease rates yielded less spatial heterogeneity (6, 4, and 3 times,
respectively; NO2 county range= 19–113 annual attributable deaths
per 100,000,mean= 38, SD=11;BC county range= 1–4,mean= 2,
SD=1;PM2:5 county: range= 32–81,mean= 55, SD=8).

We next estimated the percentage of pollutant-attributable
mortality and morbidity cases in CBGs with >50% minority pop-
ulation. We found that using CBG instead of county baseline dis-
ease rates resulted in a larger percentage of pollutant-attributable
cases for CBGs with >50% minority population in Alameda
County (Table S17 and Figures S38–S40). For example, using
CBG disease rates, we estimated that 75% of NO2-attributable
mortality occurred in majority minority CBGs, whereas that per-
centage was 72% when using county-level disease rates. The dif-
ferences between applications of CBG vs. county-level disease
rates were small but generally consistent across pollutants and
health end points. Within Oakland, CBGs with the highest per-
centage of minorities and highest estimated NO2-attributable
mortality rates were located in West Oakland near I-880, a high-
traffic–volume truck route, and in Chinatown, in the southeastern
part of Downtown Oakland (Figures S41 and S42).
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Figure 2. Cumulative density of annual nitrogen dioxide ðNO2Þ-attributable cases per 100 m×100 m grid cell in Oakland, California, using different concen-
tration and baseline disease rate data sets. (A) All-cause mortality, ages 25–99 y; (B) cardiovascular disease mortality, ages 25–99 y; (C) asthma ER visits,
ages 0–17 y, ZIP-code baseline disease rates; and (D) asthma incidence, ages 0–17 y, State of California incidence rate. Note: ER, emergency room.
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Policy-Relevant Reductions
Using concentrations from the global (NO2 and PM2:5) and U.S.
(BC) model data sets for the Bay Area, we found that rolling back
concentrations to the median (NO2 = 8 ppb; BC=0:3 lg=m3;
PM2:5 = 10lg=m3, respectively) reduced attributable deaths by
45%, 37%, and 19% [remaining deaths for NO2 =1,380 (95% CI:
400, 2,330); BC=90 (95% CI: 50, 120); PM2:5 = 2,500 (95% CI:
1,700, 3,280); Tables 2–4]. Varying magnitudes of reductions in
attributable deaths were due to the distribution of concentrations,
with PM2:5 concentrations comparatively right skewed. Rolling
back to minimum concentrations reduced cases by 93%, 78%, and
74% for NO2, BC, and PM2:5, respectively [177 (95% CI: 50, 300),
32 (95% CI: 20, 40), and 790 (95% CI: 530, 1,030) remaining for
1-ppb, 0:1-lg=m3, and 3-lg=m3 concentrations)]. Health benefits
of the reduction scenarios were more pronounced within Oakland,
where pollutant-attributable mortality was reduced by 59%, 40%,
and 52% for NO2, BC, and PM2:5, respectively, under a reduction
to the median concentration [32 (95% CI: 9, 53), 2 (95% CI: 1, 3),
and 56 (95% CI: 38, 74) cases remaining] and by 94%, 80%, and
95% under the reduction to the minimum concentration [4 (95%
CI: 1, 7), 1 (95% CI: 0, 1), and 18 (95% CI: 12, 23) cases remain-
ing]. Health benefits were smaller when using Street View concen-
trations for NO2, with a 13% and 66% decrease in NO2-attributable
mortality under reductions to the median and minimum concentra-
tions, respectively [34 (95% CI: 20, 57) and 13 (95% CI: 4, 23)
cases for 11.59 and 3:37 ppb, respectively]. Estimates for reduc-
tions using Street ViewBC concentrations were not possible owing
to few BC-attributable cases in Oakland (<1). The top five CBGs
with the highest premature mortality burdenwithinOaklandwould
have experienced an estimated 27% and 79% reduction in
NO2-attributable mortality if concentrations were reduced to me-
dian and minimum concentrations, respectively. These same five
CBGs had a greater than 50% population of racial and ethnic
minorities, indicating that the policy changes would disproportion-
ately benefit minority populations.

Discussion
We estimated the spatial distribution of NO2, BC, and
PM2:5-attributable health impacts at the neighborhood-scale
within the Bay Area, California, where high spatial resolution
concentrations from mobile monitoring, as well as CBG-level
disease rate data sets are available. We found 38-, 4-, and 5-fold
variation in mortality attributable to NO2, BC, and PM2:5 across
grid cells in the Bay Area, indicating that pollution-attributable
risks can vary considerably within individual cities. This varia-
tion was observable regardless of whether predictive models or
mobile monitoring concentration data sets were used, although
the mobile monitoring concentrations revealed more spatial het-
erogeneity. Spatial heterogeneity in air pollution-attributable
health risks was more pronounced when we applied CBG rather
than county-level baseline disease rates.

Depending on the concentration and baseline disease data sets
used, estimated NO2-attributable mortality in Oakland at the
100-m grid-cell level varied by a factor of 2–26, BC-attributable
mortality (annual deaths per 100,000) varied by a factor of 2–39,
and PM2:5-attributable mortality varied by a factor of 2–8. We
found the least heterogeneity using county baseline disease rates
and concentration estimates from a global model, and the greatest
variation using Street View concentrations with CBG baseline
disease rates. Using concentrations from Street View mobile
monitoring and predictive models yielded similar spatial patterns
in air pollution-attributable health risks because baseline disease
rates also play an important role. For the same reason, CBGs

with the highest air pollution-attributable health risks were not
necessarily those with the highest pollutant concentrations.

Comparing the influence of baseline disease rates and concen-
trations on spatial distribution, we found that neighborhoods with
the highest air pollution-attributable health risks were not neces-
sarily those with the highest pollutant concentrations. Each addi-
tional input to the health impact function changed the spatial
distribution of the estimated health burden. For example, calcu-
lating the percent of mortality that can be attributed to air pollu-
tion incorporates only the CRF and concentrations (Figure 3A).
When baseline disease rates were also incorporated to estimate
attributable mortality rates (Figure 3B), spatial patterns in risk
shifted to different areas within West and Downtown Oakland.
Finally, when population was included to estimate pollutant-
attributable disease burdens (Figure 3C), spatial patterns shifted
yet again. Therefore, considering only concentrations without
incorporating baseline disease rates and population distribution
may not adequately capture the neighborhoods with greatest
pollutant-attributable health risks and burdens. The relative im-
portance of disease rates and concentrations on spatial heteroge-
neity in risk estimates depended on the data set and its spatial
resolution, as well as the risk metric used (attributable fraction,
attributable rate, or attributable cases).

Our aggregated estimate of 3,080 (95% CI: 2,100, 4,020)
PM2:5-attributable annual deaths in the Bay Area was approxi-
mately double a previously published estimate of 1,500 deaths at-
tributable to PM2:5 in San Francisco (Anenberg et al. 2019) that
used satellite-derived PM2:5 concentrations from the Global
Burden of Disease Study (Shaddick et al. 2018). Our estimate was
also higher than the estimate from the BAAQMD (2017) Clean Air
Plan of ∼ 2,500 annual deaths attributable to anthropogenic PM2:5
emissions, which used county-level baseline disease rates and pop-
ulation estimates, a Community Multiscale Air Quality Modeling
model estimate of PM2:5 and a mean of 12 different CRFs
(BAAQMD 2017). Analysis of various PM2:5 concentration esti-
mates have indicated substantial differences in spatial patterns,
complicating comparability between risk assessments (Diao et al.
2019). We also used different disease rates, concentration–
response functions, and low-concentration thresholds.

Mobile monitoring offers a spatially explicit observational re-
cord but has incomplete spatial coverage. Predictive models
using land-use variables and satellite remote sensing have the
advantage of complete spatial coverage, but estimated concentra-
tions are uncertain. In areas where there were overlapping Street
View and predictive model data for the same pollutant (NO2), we
found higher NO2-attributable deaths when using the LUR [77
annual deaths (95% CI: 23, 137)] compared with the Street View
concentrations [39 (95% CI: 12, 66)]. Compared with concentra-
tions, NO2-attributable mortality rates using Street View and
LUR were more correlated owing to the smoothing effect of
applying the same baseline disease rates (R=0:67). These results
indicated that the Street View data set detects extremes in con-
centrations and associated health burdens that are not identified
by the LUR concentration data set. Comparing these results was
challenged by inherent differences in the data sets: First, NO2
concentrations decreased between 2011, for which we had LUR
concentration estimates, and 2015, when the Street View mobile
monitoring occurred (Duncan et al. 2016). Second, the Street
View data set captured high near-roadway exposures, whereas
the LUR model represented broader spatial average concentra-
tions with smaller decay gradients of concentrations as you move
away from main thoroughfares and highways, resulting in higher
concentrations in residential areas. In addition, Street View meas-
urements were taken during the daytime, which may underesti-
mate daily NO2 concentrations by 15–20% given that daytime
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ambient NO2 is depressed by photolysis. However, this effect
may have been balanced by the Street View data set, which did
not account for lower weekend concentrations. Given these dif-
ferences, NO2 concentrations from these two data sets were not
well correlated (R=0:55), and the LUR concentrations were
overall higher with less spatial variability.

Our study was limited in several ways. Although concentration
and population data sets are increasingly available at high resolu-
tions, baseline disease rates are still difficult to obtain at urban and
intra-urban scales. For example, for asthma incidence, we were
only able to apply a statewide incidence rate, although prevalence
data for asthma shows spatial heterogeneity of asthma within the
Bay Area and California. Expanding disease surveillance and
increasing access to highly resolved baseline disease rates in cities
around the world would improve health impact assessment esti-
mates and capacity to detect areas within cities that have elevated
pollution-attributable health risks. Our analysis of racial disparities
in air pollution health risks was also limited because we did not
incorporate racial- and ethnicity-specific baseline disease rates or
RR estimates. In addition, we applied CRFs from meta-analyses
and large, nationwide cohort studies that had high quality and sta-
tistical power although their populationsmay not havematched the
population distribution in our analysis, introducing additional
unquantifiable uncertainty to our analysis.

Our pollutant-specific estimates cannot be summed together
because we applied single-pollutant epidemiological models and,
as such, there could be a significant amount of overlap between
the deaths estimated to be attributable to each individual pollu-
tant. Some of the relationship between NO2 and adverse health
outcomes may have been accounted for by concurrent PM2:5
exposures, resulting in overlap of attributable deaths in our
results presented for NO2 and PM2:5, although PM2:5 alone does
not fully capture the effects of near road traffic pollutants more
strongly correlated with NO2 (Atkinson and Butland 2018).
Similarly, estimates presented here for PM2:5 are inclusive of BC
and other PM2:5 species. Therefore, results for BC should be
interpreted as a subset of PM2:5-attributable health outcomes. We
calculated results for both BC and PM2:5 because although PM2:5
can have multiple sources, BC is a combustion-related particle
that represents the impacts of PM2:5 traffic-related pollution as
opposed to pollution form other regional sources (Janssen et al.
2011). The low magnitude of results precluded us from drawing
strong conclusions from this comparison. The high spatial hetero-
geneity of the Street View BC concentrations resulted in poor
correlation between the two data sets (R=0:03), although the
smoothing effect of applying the same CBG baseline disease rates
to each data set resulted in increased correlation between BC-
attributable mortality rates (R=0:36).

A. Attributable fraction (%) B. Attributable cases
per 10,000

C. Attributable cases (n) D. Number of times the median
cases per 10,000

Streetview
CBG baseline
disease rates

Range: 2.9 to 16.15. Range: 1.73 to 39.61. Range: 0.17 to 1.13 per CBG. Range: 0.3 to 5.8.

LUR
CBG baseline
disease rates

Range: 6.06 to 13.12. Range: 3.17 to 34.25. Range: 0.34 to 2.08 per CBG. Range: 0.3 to 3.3.

Streetview
County baseline
disease rates

Range: 2.9 to 16.15. Range: 2.43 to 13.53. Range: 0.13 to 1.07 per CBG. Range: 0.5 to 2.8.

LUR
County baseline
disease rates

Attributable Fraction (%)

0−3 3.01−6 6.01−8 8.01−9 9.01−13 >13

Range: 6.06 to 13.12.

Risk per 10,000

0−2 2.01−7 7.01−15 15.01−20 >20

Range: 5.07 to 10.99.

Count (n) cases
per Census Block Group

0−0.13 0.14−0.38 0.39−0.57 0.58−0.86 >0.86

Range: 0.16 to 1.5 per CBG. 

Number of times the median
cases per 10,000

0−0.25 0.25−0.5 0.6−1 1.01−1.25 >1.25

Range: 0.7 to 1.5.

Figure 3. Spatial distribution of nitrogen dioxide ðNO2Þ-attributable all-cause mortality among adults in the West and Downtown Oakland area. (A)
Attributable fraction; (B) attributable cases per 10,000; (C) attributable cases; and (D) number of times the median cases per 10,000. (Extent: −122:253, 477;
−122:327, 816; 37.791, 334; 37.832, 312) using the Street View mobile monitoring (rows 1 and 2) and data from Larkin et al. 2017 land-use regression (LUR)
(rows 3 and 4) concentration data sets, as well as census block group (CBG) (rows 1 and 3) and county (rows 2 and 4) baseline disease rates. Results depicted
are for the central estimates of concentrations and relative risk estimates. Gray areas represent areas where concentration data were not available. Base map
and data from OpenStreetMap and OpenStreetMap Foundation.
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The effective use of a two-pollutant CRF in health impact
assessment relies upon RR estimates from studies able to mean-
ingfully parse relationships between correlated pollutants
(Dominici et al. 2010; Stafoggia et al. 2017), which were not
available for most of our pollutant–health outcome pairs. For one
sensitivity analysis wherein a two-pollutant model CRF for NO2
was available, we applied a PM2:5-adjusted RR estimate for NO2
and CVD mortality among the elderly from the study by Eum
et al. (2019), which resulted in lower total attributable case esti-
mates (254 attributable all-cause deaths within Alameda County,
using the unadjusted CRF, and 121 deaths, using the adjusted
CRF), indicating a considerable portion of the burden estimated
for NO2 may be attributable to PM2:5.

As demonstrated, pollutant concentrations varied substantially
within cities, whereas air pollution cohort studies in the United
States have often compared exposure between cities. No long-
term North American cohort studies have analyzed within-city
variation in RR estimates for PM2:5 and all-cause mortality
(Vodonos et al. 2018). The meta-analysis we employed for the
relationship between NO2 and all-cause mortality relied upon a
mix of studies examining within- (i.e., the ESCAPE cohorts) and
between-city (i.e., the Harvard Six Cities cohort) exposure com-
parisons. As a sensitivity analysis, we estimated results using a
within-city RR estimate (Table 1) from a subcohort of the
Canadian Census Health and Environment Cohort, which found
significant relationships between NO2 and all-cause for within-
city exposure comparisons but not for between-city exposure
comparisons (Crouse et al. 2015). This within-city RR estimate
was also included in the meta-analysis for our main CRF
(Atkinson and Butland 2018). Although the choice of CRF
changed the overall magnitude of aggregated air pollution-
attributable health impacts for each pollutant, it did not affect our
main conclusions about the intra-urban heterogeneity because we
applied the CRF uniformly across the domain. Future use of sta-
tistical methods able to assess correlated exposures (Stafoggia
et al. 2017) will allow for improved application of two-pollutant
model estimates health impact assessment and policy-making.

Interpreting and communicating the uncertainties in a health
impact assessment is a known challenge (Nethery and Dominici
2019) because, with each input parameter to the health impact
function, there is associated uncertainty. We estimated uncer-
tainty using the CIs of the RR estimates, but we were unable to
quantify uncertainty in the pollutant concentrations, baseline dis-
ease rates, and population estimates. Gridded population esti-
mates are also increasingly available at a fine spatial resolution.
Prior to selecting a population data set, we examined use of
WorldPop (Tatem 2017) estimates for 2016, which are also avail-
able on a 100 m×100 m resolution. Although provided at a high
resolution, we found the WorldPop estimates lacked the spatial
heterogeneity available in other population data sets. Although
population estimates are still a source of uncertainty in our
assessment, we believe using a data set specific to the United
States that incorporates both census and satellite data reduced
part of this uncertainty. Among our pollutant concentration data
sets, the Street View data set included only measurements that
were taken during the daytime and on weekdays and may not,
therefore, have fully captured long-term annual averages. The
LUR data set incorporates in situ data, although concentrations
are ultimately estimations of the sum of all oxidized atmospheric
odd-nitrogen species (NOy) estimations and not observations of
actual NO2 concentrations (Dickerson et al. 2019). Future work
can make use of more spatially refined estimates of PM2:5 (Di
et al. 2019). In addition, NO2 satellite-derived models have now
been developed (Di et al. 2020) that can be compared with results
from LUR models.

In addition, we assumed a causal relationship between NO2
and all-cause mortality, although the putative agent(s) in the
traffic-related pollution mixture are unknown, adding to uncer-
tainty in our estimates. Epidemiological studies often use NO2 as
a marker of traffic-related air pollution because it is easily meas-
ured and for consistency in characterizing spatial patterns in
traffic-related air pollution (Beckerman et al. 2008; Levy et al.
2014). However, none of the studies in the meta-analysis we used
to derive RRs for NO2 and all-cause and CVD mortality adjusted
for traffic-related particles or other chemicals, including BC and
PM2:5, in the traffic pollution mixture (Atkinson and Butland
2018). It therefore remains unclear whether NO2 itself is associ-
ated with mortality or whether NO2 serves as a proxy for other
elements of the traffic-related air pollution mixture. Following
COMEAP recommendations, the NO2 mortality impacts should
be interpreted as a metric of the overall mortality burden due to
mixture of near field traffic-related air pollution.

Another challenge with hyperlocal air pollution health impact
assessment that requires further exploration was capturing pollu-
tion exposure accurately for population movement. We believe
this limitation was mitigated for two reasons: a) air pollution dis-
proportionately affects the very young and very old, who tend to
stay closer to home throughout the day (Chambers et al. 2017;
Spalt et al. 2016); and b) most air pollution epidemiological stud-
ies use residential address as the method of assigning exposure,
thus accounting for population movement would be inconsistent
with the epidemiological studies from which we drew concentra-
tion–response relationships. In addition, using only residential
address in exposure assessment within epidemiological studies
has been found to underestimate health effects of PM2:5 by about
10% (Nyhan et al. 2019). Similarly, without information available
on the time-varying activity patterns of our population, we were
unable to account for time–activity data in our risk assessment;
however, exposure misclassification likely contributed less than
other variables (e.g., RRs) to uncertainty in our health impact
results. Our results indicate population movement out of highly
polluted areas may substantially reduce population pollutant-
attributable health burden. However, this points to the need for
more epidemiological analysis using exposure assessment techni-
ques beyond central site monitors, as well as techniques that
account for people’s movements rather than assigning exposure
at the residential address. This factor should be explored in
greater detail to understand how population movement affects
actual exposure levels and estimated health impact assessment
results. A related limitation is that the high-resolution concentra-
tion data sets we used did not match the exposure assessment
techniques used in the epidemiological studies from which we
derived our CRF, which most frequently used stationary monitors
and, increasingly, LUR and satellite-based models, which may be
more coarsely resolved than the data sets we used here. Thus, the
CRFs we applied may be inconsistent with the exposure esti-
mates we used.

Some recommended best practices in conducting air pollution
health impact assessments in cities globally can be derived from
the insights from this work. First, we found that applying fine-
scale mobile monitoring or satellite LUR-derived air pollution
data in health impact assessment reveals large and unequal distri-
butions of the air pollution burden in cities. This indicates that
spatial distribution of air pollution impacts could be routinely
assessed in city air quality health impact assessments. Second,
the distribution of air pollution and its risks and burdens did not
follow the same patterns owing to large underlying spatial health
disparities (reflected in baseline disease rates) and population dis-
tribution. Although most of the research in this area has focused
on producing increasingly fine resolution estimates of air
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pollutant concentrations, similar emphasis has not been given to
estimating or measuring spatial patterns of disease. Ignoring
health disparities results in underestimating air pollution impacts
in areas already burdened by poor health and masks the dispro-
portionate impact faced by disadvantaged communities within
cities. This has important environmental justice implications, and
local disease rates should be incorporated as a best practice into
city air pollution health impact assessments.

Conclusions
We found that air pollution health risks vary considerably within
cities and that information on the spatial distribution of pollutant
concentrations alone is insufficient to identify areas of elevated
risk and burden of disease attributable to air pollution. We antici-
pate that these findings will apply to other health impact assess-
ments conducted on the local scale given that spatial
heterogeneity in disease rates is not unique to the Bay Area.
Using pollutant concentrations from predictive models and mo-
bile monitoring measurements identify similar spatial patterns of
disease because disparities in baseline disease rates drive a sub-
stantial portion of heterogeneity in air pollution-attributable
health risks. For areas with limited resources or where intensive
mobile monitoring is not feasible, LUR- and satellite-derived
models may be sufficient for identifying intra-urban areas of ele-
vated risk, but additional research is needed to determine whether
these findings hold in other areas. In addition, LUR- and satellite-
derived models typically do not account for the mixture of vehi-
cle types and traffic volume and, therefore, may be improved
with the information about roadway concentrations captured in
mobile monitoring data sets. Future work may seek to integrate
multiple sources of pollutant concentration information to lever-
age the advantages of each. It is also important to expand report-
ing of disease rates at subcity scales.
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